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ImageNet Large Scale Visual Recognition Challenge
(ILSVRC 2012)

< What do we do with AlexNet?

Images Color images with

nature objects
Size 469 x 387

# examples 1.2 M
# classes 1,000
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Experimental Results

& ILSVRC-2010 Test Set Error Rate
| Model | Top-1 | Top-5 |
Sparse coding [2] | 47.1% | 28.2%

SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

% Results on 2012 Validation and Testing Set

| Model | Top-1 (val) | Top-5 (val) | Top-5 (test) |
SIFT + FVs [7] - — 26.2%
1 CNN 40.7% 18.2% —
5 CNNs 38.1% 16.4% 16.4%
1 CNN* 39.0% 16.6% —
7 CNNs* 36.7% 15.4% 15.3%

e 5 CNNs: averaging 5 similar CNNs trained with ILSVRC-2010
e 1 CNN: six convolutional layers trained with ILSVRC-2011 and fine-tuning it on ILSVRC-2012
e 7 CNNs: averaging two 1 CNN trained with ILSVRC-2011 and 5 CNNs trained with ILSVRC-2010
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Historical Background

& LeNet (for image classification, LeCun et al. in 1989)
e Trained on MNIST (60,000, 28x28 handwritten number digit)

e One of earliest largely deployed CNN in Post Service and Banks
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Historical Background

< Why does it take so long for AlexNet to come?
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Historical Background

% Why does it take so long for AlexNet to come?
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Historical Background

% AlexNet, the Game Changer
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Implementation Details

Q‘ Pre-Process: Rescaled to 256x256

# Data Augmentation:

During Training:
1. Random cropping to 224x224 with Horizontal Reflections (enlarged by a scale factor of 2048)

2.  Random changing to the intensity and color of the illumination

I:L‘y = [Iﬁn‘[gﬁ-[f;]T + [P1,P2,P3][(11)\1,(12/\2,ag)\g]T

pi,)\,- iith eigenvector and eigenvalue by PCA '
Y; :Drawn from N(avg=0, 8=0.1)
>
Apply Horizontal Reflection and 4 corner and 1 center 1

Cropping, averaging the predictions of ten patches from softmax
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Network Architecture

0.54

€ ReLU Nonlinearity:

e shorter training time with gradient descent than tanh() or sigmoid 0.25-

Training error rate

% Local Response Normalization:

i ithi 0 T T T T T T T
e constrain ReLU output within a bounded range T N T

e lateral inhibition: carry out local contrast enhancement for the next layers Epochs

min(N—1,i4+n/2) B

R ] 2
ba:,y o a‘a:,y/ k +a Z (ai,y)

j=max(0,i—n/2)

a;’y:activity of a neuron 4 sindex of center neuron
N :number of channel k :avoid division by zero
7L :neighborhood length (O:normalization constant o Jotae-Clanne} Sl i)

/3 :contrasting constant
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Network Architecture

«* Overlapping MaxPooling (LeNet: non-overlapping average pooling):

e introducing overlap maxpoling to prevent overfitting
+* Dropout:

e combining the predictions of many different models

_ { 0 with probability 0.5
0.5x otherise

'

[ 0 with probability p
xX=

X :
——  otherise
1-p

(a) Standard Neural Net (b) After applying dropout.
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Network Architecture

#* Overlapping Pooling:

e introducing overlap maxpoling to prevent overfit

+* Dropout:

e combining the predfetersofmany different models

— — FON

Dropout "is a modified form of L2 regularization” (JMLR, Srivastava et al. in 2014)
Y

'

[ 0 with probability p
x=

X :
——  otherise
I-p

(a) Standard Neural Net (b) After applying dropout.
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Details of Training

#* Stochastic Gradient Descent with batch size of 128, Momentum of 0.9, Weight Decay of 0.0005

Viy1 = 0.9 - Ve— 0.0005 - € - Wie === gt i
i
Wiyl = W;+ Viq1
X Learning Rate initialized at 0.01 and divide by 10 when the validation error rate stopped improving

e more techniques on adjusting learning rate y/
Ex. Cosine or more specific Learning Rate Scheduler

cos
X Weights Initialization: set bias to 1 accelerates the early stage of learning (ReLU) —

e nowadays, does not really matter =
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Discussion of Results

& Test Images from ILSVRC-2010

mite
black widow lifeboat

tick fireboat
starfish drilling platform

Madagascar cat

vertible ] agaric dalmatian monkey
grille mushroom spider monkey

pickup Jelly fungus elderberry titi

beach wagon gill fungus [ffordshire bullterrier
fire engine [ dead-man's-fingers currant howler

Some test images and the five labels when comparing the output from the last fully connected
considered most probable by AlexNet layer, from right to the left, these are the six images that
have small Euclidean separation to the first image
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Summary

< A variant from LeNet with techniques: Dropout, ReLU, MaxPooling, Local Response Normalization
% AlexNet won ImageNet classification challenge in 2012

4 Changes the game of Computer Vision

What Will Come After?

4 Can we build even deeper and wider CNNs to perform better ? YES!
VGG: K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014.
4 Can we use a similar network architecture on object localization and detection in image? YES!

(OverFeat) P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: Integrated Recognition, Localization and Detection using Convolutional
Networks.” 24-2014.
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Thank Youl!
Shuozhe Li
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ImageNet Large Scale Visual Recognition Challenge
(ILSVRC 2012)

% What do we do with AlexNet? MNIST
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e G o R 0606bEC0Ga66
Images Color images with Gray image for hand-
nature objects written digits
Size 469 x 387 28 x 28
# examples 1.2 M 60 K
# classes 1,000 10
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